

Evidence for Configural Superiority Effects in Convolutional Neural Networks

INTRODUCTION

- **Configural superiority effect (CSE)** combinations of parts are perceived more quickly and accurately than the parts alone^{1,2}
- CSEs thought to be driven by "emergent" feature (EF) differences between target and distractors¹
- EFs may result from the visual system learning abstract representations to support complex tasks, like object recognition, at the expense of simpler but less ecologically relevant tasks
- **Convolutional Neural Nets (CNNs)** excel at object recognition, as well as tasks for which they are not trained. Feature vectors at different layers correlate with responses of various brain areas³

Research question:

• Do the higher levels in a CNN show CSEs?

Approach:

- Use the VGG-16 network⁴ pre-trained on ImageNet as a stand-in for the visual hierarchy
- Train a classifier to do an oddball localization task using layer activations as the input features

	ba	base		
closure		`		
	N	/		
roundnoss	((
Toununess	(
20	Y			
3D	Y			
orthogonality				
orthogonality		/		
	closure (`` (((() () () () () () () (١		
parallelism	١			

noise, translations, etc. = 28,797 stimuli in total

Shaiyan Keshvari & Ruth Rosenholtz

METHODS

Base (no EF) and composite (EF) stimuli Noisy, translated, rotated, resized, and contrastadjusted images to promote generalizability For each EF x (base, composite), trained a multiclass linear SVM on the last fully connected layer (fc7, 4096 "neurons") to locate the "odd quad" Compute cross-validated performance Also tested a network with random weights

e	example input stimuli												
	0	((\bigcirc	\bigotimes		\nearrow	\nearrow		/			
	0	0		\bigcirc	\bigotimes		\nearrow	/					

RESULTS

- Average cross-validated performance
- Composite better than base (CSE!):
 - *orthogonality* (Δ33 percentage points) and *roundness* (53 pp)
- No effect:
 - *closure* (< 1 pp)
- Base better than composite:
 - *parallelism* (23 pp) and *3D* (21 pp)
- Random CNN weights: no effect for any EFs
- Pilot behavioral experiment (*N*=2) confirmed CSE (44 +/- 0.06 pp)

cross-validated SVM performance for all EFs

CONCLUSIONS

- Some evidence that later CNN features compute "emergent" features, but not consistently
- Need to test other layers and networks
- Other factors like "false pop-out", may explain some effects not modeled by CNN

[1] Pomerantz, J. R., Sager, L. C., & Stoever, R. J. (1977) [2] Pomerantz, J. R., & Cragin, A. I. (2015) Special thanks to Yrvine Thelusma, Carl Vondrick, Shaoxiong Wang, and Ben Wolfe

[3] Yamins D*, Hong H*, et al. (2014) [4] Simonyan, K. A. Zisserman, K. (2014)