Evidence for Configural Superiority Effects in Convolutional Neural Networks
Shaiyan Keshvari & Ruth Rosenholtz

INTRODUCTION
• Configural superiority effect (CSE) – combinations of parts are perceived more quickly and accurately than the parts alone1,2
• CSEs thought to be driven by “emergent” feature (EF) differences between target and distractors1
• EFs may result from the visual system learning abstract representations to support complex tasks, like object recognition, at the expense of simpler but less ecologically relevant tasks
• Convolutional Neural Nets (CNNs) excel at object recognition, as well as tasks for which they are not trained. Feature vectors at different layers correlate with responses of various brain areas3

Research question:
• Do the higher levels in a CNN show CSEs?

Approach:
• Use the VGG-16 network4 pre-trained on ImageNet as a stand-in for the visual hierarchy
• Train a classifier to do an oddball localization task using layer activations as the input features

METHODS
• Base (no EF) and composite (EF) stimuli
• Noisy, translated, rotated, resized, and contrast-adjusted images to promote generalizability
• For each EF x (base, composite), trained a multi-class linear SVM on the last fully connected layer (fc7, 4096 “neurons”) to locate the “odd quad”
• Compute cross-validated performance
• Also tested a network with random weights

RESULTS
• Average cross-validated performance
• Composite better than base (CSE!): - orthogonality (Δ33 percentage points) and roundness (53 pp)
• No effect: - closure (< 1 pp)
• Base better than composite: - parallelism (23 pp) and 3D (21 pp)
• Random CNN weights: no effect for any EFs
• Pilot behavioral experiment (N=2) confirmed CSE (44 +/- 0.06 pp)

CONCLUSIONS
• Some evidence that later CNN features compute “emergent” features, but not consistently
• Need to test other layers and networks
• Other factors like “false pop-out”, may explain some effects not modeled by CNN

Special thanks to Yrvine Thelusma, Carl Vondrick, Shaoxiong Wang, and Ben Wolfe

--
Cross-validated SVM performance for all EFs
average human performance (N=2) vs average SVM performance
0.5
0.7
0.9
0.1
0.3
0.5
0.7
0.0
0.2
0.4
0.6
0.8
1

fraction of data left out during training

\(\text{noise}, \text{translations}, \text{etc.} = 28,797 \text{ stimuli in total} \)

\text{example input stimuli}