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What information do DCNNSs use to classify
objects?
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Kubilius et al. (2016): Shape representations similar between
humans and DCNNs
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Figures from Kubilius et al. (2016)
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=== Baker et al. (2018): DCNNs no not classify using global shape
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== Summary: There is a disagreement as to what degree DCNNs
are coding local vs global information

* Part of the disagreement between findings may be due to
inconsistent stimuli

* Directly controlling for global vs local shape cues in the stimuli can
give a clearer picture

e 1000-way object classification -> bad probe of shape sensitivity?
* Task inherently difficult, may underestimate shape information
* Fully connected layers may be over-fitted to ImageNet, unlike conv. layers
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Carefully control shape information available to DCNNs

e Control the presence of local shape information using a generative
model of shape

* Compare different “amounts” of local shape information

* Measure information as decodability throughout the network
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Experiment 1: local shape metamers

Successively added constraints
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Experiment 1: Example local-matched shapes
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m Approach to testing DCNN shape sensitivity

* Approach

1. Input natural and synthetic shape silhouettes to AlexNet and VGG-16
networks pre-trained on ImageNet

2. Measure linear separability of natural vs synthetic shapes at each layer of
the networks

12
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Experimental methods

* Natural shapes: 391 animal shapes from Hemera dataset

* 391 synthetic shapes per dataset
* Silhouettes are area-matched, resized to 224 by 224 pixels.

* Train linear classifier to distinguish animals from synthetic shapes based
on activations at each convolutional layer.
» 8 epochs of training per category
» 5-fold cross validation
e Small rotations and flips during training
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Experiment 1 results: networks compute nonlocal shape
information, and it increases with depth
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Average performance: sparse components most metameric

Mean Performance Over Layers

| I|HH

0.95 -
0.9
0.85 |

9Jduew.iojiad

17

VGG-16

AlexNet

U

YORK

UNIVERSITY



<u IIIIII : SCIENCE

TTTTTTTTTTTTTT

Centrefor W YORK UNIVERSITY
Vision Reseal

Talk outline
* Prior work
* Experiment 1: Network sensitivity to local shape information

e Experiment 2: A sparse components model of shape

* Conclusions

YOR

18

fe=y =
zZ2

<<
mim
D |0
wiwn



Centre for t
Vision Research

Experiment 2: sparse components of global shape

ASPELEV RT3
1L AN NP I/] "

.

Sparse components of images

Olshausen & Field (1997)

AMAIINGIS M
CH Yo AN o/
A4\ v AN
LAavwhweig ary
MCYPALy
Y FrFARCNYY
N PO P IMN
LR P\ )HM
Sparse components of animal shape

Clément & Elder (2018)
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Experiment 2: examples of sparse components of animal shape
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= Experiment 2 results: sparse component vs animal is
distinguishable in DCNNSs, increasingly with layer
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Conclusions

Ability to discriminate animal vs synthetic shapes increases
monotonically with network depth.

DCNNs code precise information about curvature distribution

Non-local shape information emerges in the hierarchy

Sparse components of global shape (Experiment 2) more metameric
than shapes matching only local curvature (Experiment 1).

Sparse coding captures something about non-local information computed
by DCNNs
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