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banana banana?

Kubilius et al. (2016): Shape representations similar between 
humans and DCNNs

Figures from Kubilius et al. (2016)
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Figures from Baker et al. (2018)

Baker et al. (2018): DCNNs no not classify using global shape
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Summary: There is a disagreement as to what degree DCNNs 
are coding local vs global information

• Part of the disagreement between findings may be due to 
inconsistent stimuli

• Directly controlling for global vs local shape cues in the stimuli can 
give a clearer picture

• 1000-way object classification -> bad probe of shape sensitivity?
• Task inherently difficult, may underestimate shape information

• Fully connected layers may be over-fitted to ImageNet, unlike conv. layers
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Carefully control shape information available to DCNNs

• Control the presence of local shape information using a generative 
model of shape

• Compare different “amounts” of local shape information

• Measure information as decodability throughout the network
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Defining shape in terms of local curvature
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Experiment 1: local shape metamers

1st 2nd 3rd 4th All

Successively added constraints

Moment matched 
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Mean-matchedAnimals Full-distribution

Experiment 1: Example local-matched shapes
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Approach to testing DCNN shape sensitivity

• Approach

1. Input natural and synthetic shape silhouettes to AlexNet and VGG-16 
networks pre-trained on ImageNet

2. Measure linear separability of natural vs synthetic shapes at each layer of 
the networks

12



Experimental methods

• Natural shapes: 391 animal shapes from Hemera dataset

• 391 synthetic shapes per dataset

• Silhouettes are area-matched, resized to 224 by 224 pixels.

• Train linear classifier to distinguish animals from synthetic shapes based 
on activations at each convolutional layer.
• 8 epochs of training per category 
• 5-fold cross validation 
• Small rotations and flips during training

13



Full distribution 
matched

Layer index

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13
P

e
rf

o
rm

an
ce

P
e

rf
o

rm
an

ce

Layer index

A
le

xN
et

V
G

G
-1

6

Mean matched

Layer index

P
e

rf
o

rm
an

ce
P

e
rf

o
rm

an
ce

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13

Layer index

Variance 
matched

Layer index

1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13

P
e

rf
o

rm
an

ce
P

e
rf

o
rm

an
ce

Layer index

Experiment 1 results: networks compute nonlocal shape 
information, and it increases with depth
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Average performance: sparse components most metameric
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Experiment 2: sparse components of global shape

Olshausen & Field (1997)

Sparse components of images
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Clément & Elder (2018)

Sparse components of animal shape



Experiment 2: examples of sparse components of animal shape
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Average performance: sparse components most metameric for 
DCNNs
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Conclusions

• Ability to discriminate animal vs synthetic shapes increases 

monotonically with network depth. 

• DCNNs code precise information about curvature distribution

• Non-local shape information emerges in the hierarchy

• Sparse components of global shape (Experiment 2) more metameric 

than shapes matching only local curvature (Experiment 1). 

• Sparse coding captures something about non-local information computed 

by DCNNs
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