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• Visual short-term memory is limited by a continuous and 

variable resource. 

 

• Human observers perform optimal inference in change 

detection, taking into account both internally and externally 

induced  fluctuations in encoding precision. 

Modeling the encoding stage 
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Models of VSTM 

Experiment 1 Results of Experiment 2 

• Change detection is a 

popular paradigm in studies 

of visual short-term memory 

(VSTM). 

 

• We model this task using  a 

combination of a VSTM 

encoding stage and an 

optimal-observer model for 

the decision stage. 
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Main findings 

1) VP is most likely model 

for encoding stage 

2) Optimal decision rule fits 

very well 
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   - change occurrence (0 or 1) 

  - magnitude of the change 

  - vector of change magnitudes at all locations 

  , - orientations in 1st and 2nd display 

  ,  - observations in 1st and 2nd display 

 

Observations are modeled as  

noisy (Wilken & Ma, 2004) with 

a Von Mises distribution 

(circular Gaussian). 
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The optimal observer 

infers     from    and  , 

by integrating out 

nuisance variables   

Encoding stage Decision stage 

In the variable-precision model, 

resource is drawn (independently for 

each item) from a Gamma distribution. 

Here, the mean of this distribution is 

inversely proportional to set size. 

 

Fluctuations in precision might 

represent fluctuations in attention. 

The precision with which a stimulus is encoded is determined by 

the concentration parameter, , and depends on which model of 

VSTM is assumed. 

Modeling the decision stage 

Results of Experiment 1 

Do human observers optimally take into account both internally 

and externally induced variability in stimulus reliability? 
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In the decision stage, the observer may not incorporate 

complete knowledge of item-to-item encoding precision. We 

therefore consider the following observer assumptions: 

 

 - Variable precision (correct) 

 - Fixed precision (LOW and HIGH are constants) 

 - Average precision (LOW = HIGH= average ) 

 - Single precision (LOW = HIGH= constant) 

 

We consider the optimal and a suboptimal (max) decision rule. 
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Main finding 

The most likely model is the one in 

which precision is variable, the  

observer has complete knowledge 

about precision, and uses the 

optimal decision rule. 

Experiment 2 
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Bayesian model comparison results 
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