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We study the concept of color semantics by modeling a dataset of magazine cover designs, evaluating the
model via crowdsourcing, and demonstrating several prototypes that facilitate color-related design tasks. We
investigate a probabilistic generative modeling framework that expresses semantic concepts as a combination
of color and word distributions – color–word topics. We adopt an extension to Latent Dirichlet Allocation
(LDA) topic modeling, called LDA-dual, to infer a set of color–word topics over a corpus of 2,654 magazine
covers spanning 71 distinct titles and 12 genres. Although LDA models text documents as distributions
over word topics, we model magazine covers as distributions over color–word topics. The results of our
crowdsourcing experiments confirm that the model is able to successfully discover the associations between
colors and linguistic concepts. Finally, we demonstrate several prototype applications that use the learned
model to enable more meaningful interactions in color palette recommendation, design example retrieval,
pattern recoloring, image retrieval, and image color selection.
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1. INTRODUCTION

Color conveys meaning. Beyond basic visual perception of color itself, humans
classify colors at higher levels of abstraction into verbal and nonverbal semantic
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categories [Humphreys and Bruce 1989; Barsalou 1999; Derefeldt et al. 2004]. In
practice, designers carefully choose color combinations not only to be appealing, but
also to communicate specific concepts, moods, and styles [Eisemann 2000; Frascara
2004; Newark 2007; Samara 2007].

Previous work has attempted to understand how colors map onto color names and
onto semantic concepts. For instance, a particular range of hue is called “blue,” and may
semantically relate to concepts of “coolness” or “potency” [Berlin 1969; Osgood 1971;
Ou et al. 2004a, 2004b, 2004c]. Kobayashi’s Color Image Scale is a notable attempt
to understand the implications of color semantics in design [Kobayashi 1981, 1991].
Kobayashi used crowdsourcing experiments to collect ratings of colors and three-color
palettes along 180 meaningful qualities, e.g., “modern” vs “conservative” or “stylish” vs
“rustic.” Using the chromaticity and values of colors as well as the “warm” vs “cool” and
“soft” vs “hard” ratings, he organized the color palettes on a 2-D space. He then used
the remaining ratings and factor analysis to define groups corresponding to fashion,
product design, and textile in this space. This color scale, however, suffers several fun-
damental limitations. Importantly, there is no rigorous mapping function for adding
new concepts. Furthermore, the discriminative nature of the space precludes combina-
tions of non-adjacent concepts, for instance, “both casual and modern.”

More recent work addresses some of these shortcomings by using data mining and
discriminative models to automatically classify colors and color palettes into categories
practical for product design [Csurka et al. 2010; Murray et al. 2012]. Although certainly
a major advance, this approach has two major shortcomings with respect to design.
First, it is highly dependent on context-free, human-labeled color palettes. People may
associate different labels to the same color or color palette depending on the context,
or even use an arbitrary name such as “my-theme” [O’Donovan et al. 2011]. This is
particularly relevant for design. For instance, magazine covers must compete with other
magazines on a newsstand, so designers spend many days conceptualizing and creating
covers that attract customers at a glance [Foges 1999]. This requires the designers to
carefully choose a color palette for the cover based on the magazine’s general topic and
the specific stories in the issue. Second, the discriminative approach alone does not
allow for generation of novel palettes or palette combinations for design applications;
research has shown that suggesting designs or elements of design can help users be
more creative and productive [Herring et al. 2009].

We bring together probabilistic models and a novel dataset to address these chal-
lenges. Specifically, we adapt LDA-dual, an extension of Latent Dirichlet Allocation
(LDA) topic modeling [Shu et al. 2009], as a way to discover meaningful color–word
combinations, which we call color–word topics. We simultaneously infer novel color–
word topics from the distributions of colors and words occurring within our corpus of
2,654 magazine covers, which spans 71 distinct titles and 12 genres. Furthermore, our
framework harnesses the LDA model’s generated color topics to interactively create
original color combinations, and select perceptually similar five-color palettes from
those color combinations for design. This link between color, language, and semantic
concepts opens the door to many possible applications in design. The user could, for
example, choose color palettes based on topic words, and use those color palettes to
retrieve design examples (Figure 1).

To verify whether or not users agree with the associations between color combina-
tions and linguistic concepts produced by the model, we conducted a crowdsourcing
experiment. We used the model to generate pairs of word clouds and discretized color
palettes. Users viewed the color palettes and chose the most appropriate corresponding
word clouds from four alternatives (one of which came from the model). To complement
this evaluation, we conducted a second experiment with the same setup, but instead
showing a word cloud and asking users to match it with color palettes. Based on the
user feedback, we inferred the strength of the association between each color palette
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Fig. 1. Application of color semantics in color palette selection, and design example retrieval. See Section 8.
Magazine cover images used with permission [WIRED 2009; Glamour 2009a; Bloomberg Businessweek 2012;
GQ Magazine 2012; Science Magazine 2011].

and word cloud in the experiment. This allowed us to test whether the model produced
intuitive pairs of colors and word clouds. This crowdsourcing strategy is a superior
way to evaluate the model when compared to held-out likelihood methods (see Wallach
et al. [2009]), which are suboptimal when applied to data from semantically meaningful
topics [Chang et al. 2009].

Given a verified model of color–word topics that is both inferential and generative,
how can we use it for design? Our rigorous model of color semantics enables many ap-
plications, including image retrieval [Solli and Lenz 2010], recommending design alter-
natives [Jahanian et al. 2013], editing graphics, and creating color palettes [Heer and
Stone 2012]. There are several online communities for color palette design (e.g., Adobe
Kuler [2016], ColourLovers [2016]), each with thousands to millions of user-created,
named, and rated palettes. Despite the expansive scope, however, it is quite difficult
for users to navigate them to find useful examples. These online services commonly use
sparse, user-labeled keywords to aid search; users are at the mercy of whether a previ-
ous user labeled a color palette with the concept desired. Furthermore, the open-ended
labeling procedure leads to little agreement between labels, which makes search more
noisy. Color semantics, on the other hand, can provide a meaningful and tractable way
to find palettes. We show how we apply our model’s discovered color–word topics to rec-
ommend palettes based on both perceptual similarity and semantic concepts. The user
can then automatically discover the palettes that match their application. Importantly,
we can retrieve design examples by mapping from recommended palettes to a pool of
magazine covers (Figure 1). These applications are particularly relevant in light of the
emergence of design-by-example, a concept in HCI that enables more creative design
by users through display of related examples [Herring et al. 2009].

The overarching contribution of our work is to provide a novel solution to the “gap”
of automatically connecting media to semantic information. This gap has been a major
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point of discussion for over a decade [Smeulders et al. 2000; Sethi et al. 2001; Mojsilovic
and Rogowitz 2001; Liu et al. 2007] and is considered to be “a major challenge to solve
in the multimedia community” [Lindner and Süsstrunk 2015]. Our framework tackles
the gap directly, taking media in the form of magazine cover designs, and extracting
semantic information in the form of color–word histograms. Furthermore, the flexibil-
ity and richness of the model provide a way to traverse the gap in the other direction,
going from semantic information to media. Our work makes the following specific
contributions: First, rather than use the typical approach of extracting hand-crafted
features or utilizing supervised learning, we train an unsupervised topic model to
discover the inherent relationships between sets of multiple words and colors found
in designs. This approach better reflects the underlying rich associations between
colors and words. Second, we provide an intuitive and useful technique to address
the challenge of visualizing compound topics discovered by topic models. Third, we
use crowdsourcing to validate our modeling, unlike typical approaches that instead use
crowdsourcing to drive the modeling. Furthermore, our crowdsourcing study covers
a large wide range of demographics, allowing us to test known variations in color
semantics between cultures. Finally, we demonstrate how to integrate our approach
with typical design applications to support intuitive interactions. Because our model
implements the notion that color is understood different levels of abstraction, we
support the user to select a set of arbitrary words, anything from “red” to “science” to
“dancer,” that describes the purpose or context of their media. Our model’s associations
then link the words to relevant design examples, images, or color palettes.

The flow of this paper is as follows. In Section 2, we discuss prior work on both
theoretical and practical aspects of color semantics. In Section 3, we introduce the
dataset we collected. We then discuss the inference and generative mechanisms in the
LDA-dual modeling framework in Section 4. In Section 5, we illustrate how to visual-
ize the discovered semantic topics. We then explain our design of the crowdsourcing
experiment in Section 6, and analyze the crowd responses in Section 7. In Section 8,
we demonstrate a number of applications for color semantics, specifically color palette
selection, design example recommendation, pattern recoloring, image retrieval, and
color region selection in images. We conclude by discussing remaining limitations of
our approach, and suggest a number of avenues for future work in Section 9.

2. PRIOR WORK

2.1. Color Cognition

There is more to our experience with color than low level perception; humans classify
colors into multiple progressively higher levels of abstraction. The study of the verbal
and semantic categories associated with colors is called color cognition [Humphreys
and Bruce 1989; Barsalou 1999; Derefeldt et al. 2004]. These verbal and semantic
categories enable us to communicate about colors. For instance, not only can we identify
a color as “red”, but we can also further describe it as “warm,” or even more abstractly,
as “romantic.” The extent of the linkage between color and meaning, and its cross-
cultural variation, has spurred an entire field of research in color naming, emotional
meanings of colors, and visual communication design.

Color naming refers to associating colors with names like “blue” or “red.” The early
work of Berlin and Kay [1969] introduced the study of the consistency of color naming
between cultures. They studied many different languages, and concluded that there
exists a set of universal 11 basic color categories, and that any given language always
draws its basic color terms from these categories. Later studies reformulated each of
the basic terms as continuous functions of a fuzzy set to account for evolving terms [Kay
and McDaniel 1978]. Other studies, however, have challenged these universal terms,
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for example, finding two terms for “blue” in Russian language [Winawer et al. 2007].
Cultural semiotics also appear to influence the basic terms [Paramei 2005]. Others have
shown how proposing a list of predefined basic terms in an experiment can influence
color category judgments [Roberson et al. 2000]. This approach mathematically and
computationally limits models of color categorization [Chuang et al. 2008].

Complementary to color naming, research on color semantics aims to discover the
“meaning” of colors. The first systematic approach to quantifying meanings of linguistic
concepts came from measurement of meaning [Osgood 1952]. Osgood [1952] proposed
an affective space based on 12 pairs of bipolar terms (such as happy-sad or kind-cruel).
In a later study, Adam and Osgood [1973] found that although there are differences
across cultures between the affective meanings attributed to the colors, there are
also consistencies. For instance, among all the cultures, red is strong and active. The
ability of such bipolar scales to capture semantics continues to be an active line of
research [Ou et al. 2004a, 2004b, 2012]. Among these bipolar scales, Color Image
Scale of Kobayashi [1981, 1991] is relevant to the current study since it contains
multi-color combinations with associated linguistic concepts. The Color Image Scale
is a semantic space of bipolar terms, augmented with terms from fashion and textile
products such as “chic” and “dandy.” This scale comprises of two dimensions, warm-
cool and soft-hard, 180 adjectives (e.g., “festive,” “romantic,” and so on), and 15 high
clusters (e.g., “modern,” “natural,” and so on). Using the chromaticity and values of
colors as well as the “warm” vs “cool” and “soft” vs “hard” ratings, he organized the
color palettes on a 2-D space. He then used the remaining ratings and factor analysis
to define groups corresponding to fashion, product design, and textile in this space. He
conducted several crowdsourcing experiments where participants rated the similarity
between color palettes and descriptive adjectives in order to map color combinations
onto this space. Later, cross-cultural studies examined the universality of the Color
Image Scale [Ou et al. 2004a, 2004b, 2012].

2.2. Data Mining Approaches

Our work focuses on mining the association between colors and linguistic concepts in
the context of design. On the other hand, existing machine learning models of color and
language have largely been restricted to the domain of color naming. As color semantics
builds on color naming, however, it is important to examine existing data-driven models
of color naming.

Prior work in modeling color naming attempts to fit statistical models to databases
of color names. Specifically, it links a set of labels to the Berlin and Kay basic col-
ors (see Heer and Stone [2012] for a review of these models). The main limitation
is that these labels are combinations of basic color terms (e.g., “greenish-blue”), and
do not necessarily map to real-world objects. Lin et al. [2013a], and more recently
Setlur and Stone [2016], extended this work in the domain of data visualization. Both
approaches aim to improve user interactions with color by decreasing Stroop Interfer-
ence (see MacLeod [1991] for a review), or the difficulty observers have when there is a
mismatch between a color–word combination. For example, coloring the word “apple”
with blue in a visualization can lead to confusion. Setlur and Stone’s main contribu-
tion was to mine Google n-grams (see NgramViewer [2016], Michel et al. [2011]) and
discover more word context to incorporate word context with respect to objects and
brands.

Researchers in computer vision have approached color naming from a more image-
based perspective. Importantly, they have used large datasets of images and captions
from internet search engines and topic modeling to ascertain the associations between
words and basic colors. Weijer et al. [2009] use Probabilistic Latent Semantic Analysis
(PLSA), and Schauerte and Stiefelhagen [2012] use LDA, to learn these associations.
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In the case of PLSA, the authors adapt and extend the model by defining prior Dirichlet
distributions for color labels as well as a regularization term to control the shape of
the model. Schauerte and Stiefelhagen use a supervised version of LDA [Mcauliffe and
Blei 2008; Wang et al. 2009] to learn basic word–color associations. It is important to
note the similarity and two key differences between this LDA model and the one we
present: Although both approaches simultaneously learn the co-occurrences of visual
features and words, our model is unsupervised and uses a different graphical model
(a mixture of color–word proportions) to describe the topics. Furthermore, one key
aspect of both of these previous modeling approaches is that they were evaluated by
using cross-validation to maximize the likelihood of the data given the model. This
method of cross-validation poses problems when capturing semantically meaningful
topics [Chang et al. 2009]. As we will show, our approach circumvents cross-validation
by using crowdsourcing to validate the inferred topics.

Building toward richer color semantics, researchers have recently modeled more
abstract linguistic concepts. Csurka et al. [2010] discuss color moods, whereas Solli
and Lenz [2010] algebraically implement Kobayashi’s Color Image Scale. Csurka and
colleagues selected 15 linguistic concepts with associated color combinations from
Eisemann [2000] and an online community called ColourLovers [2016] to create a vo-
cabulary of labels. They trained a classifier to associate these linguistic concepts with
colors. Furthermore, Murray et al. [2012] utilized this framework for transferring color
moods to images. In image retrieval, Solli and Lenz define a mathematical framework
for Kobayashi’s Color Image Scale. Their goal was to index any given image based on the
proportions of Kobayahsi’s three-color combinations that it contains. Given its effective-
ness, we previously utilized this framework in a system for designing alternative and
customized magazine covers (see Jahanian et al. [2013]). A notable difference between
Csurka and colleagues’ approach and the current study is that our inferred clusters
take into account the proportions of the colors and not simply their presence. Impor-
tantly, as mentioned earlier, the online color palettes used by Csurka and colleagues
are potentially noisy and do not necessarily indicate context [O’Donovan et al. 2011].

Attempting to outperform the typical method of finding palettes by querying words
on Adobe Kuler [2016], Lindner and Süsstrunk [2013] suggested a method to automat-
ically generate color palettes based on users’ input words. First, they constructed a
database of the 100,000 most frequent words in a subset of Google n-gram text [Google
n-grams 2016]. Next, for each of these words, they found the top 60 images returned by
Google image search. For each image, they extracted a set of five-color palettes using
four different “harmonious templates” (Adobe Kuler, Matsuda [1995]), and designed a
tool that delivered the best palette from each template at a user’s request. Finally, they
tested their results using a small set (30) of color palettes and found that average users
preferred their palettes better (but not statistically significant) than those retrieved
from Adobe Kuler. Our work is different in three important ways. First, our approach
discovers the color–word associations made by designers in a corpus of magazine cov-
ers. Using our corpus is beneficial because it gives us a large diversity of data, while
avoiding the potential pitfalls of using the top Google search results. Namely, search
results can be influenced by particulars of the search algorithm, e.g., time and loca-
tion. Second, in contrast with the single word to multiple palettes mapping discovered
by Lindner and Süsstrunk [2013], we find the relationships between sets of multiple
words and sets of multiple colors. These many-to-many associations underlie the true
semantic nature of media, but can be complex to analyze; modeling them effectively
requires the use of flexible models. LDA-dual is particularly well suited for this task.
Finally, since our model internally uses a richer representation of colors than a simple
five-color palette, we enable ranking color palettes both extracted from our dataset as
well as those from any existing database of palettes, like Adobe Kuler or ColourLovers.
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3. DATA COLLECTION

Our dataset of magazine covers includes 2,654 covers from 71 magazine titles and
12 genres, spanning 14 years, from 2000 to 2013 (and one cover from 1998). We col-
lected approximately 1,500 of these covers by scanning them from magazines held
by libraries and news-stands in our university. The rest of the cover images were
downloaded from the Internet. Although we developed a web crawler tool to collect
magazine covers, because many magazine publishers do not provide archives with
high quality images, in half of the cases we had to collect online images by hand.1
We attempted to collect roughly 12 different genres of magazines to capture differ-
ent contexts of design. These genres include Art, Business, Education, Entertainment,
Family, Fashion, Health, Nature, Politics, Science, Sports, and Technology. To this end,
we obtained category labels from the Dewey Classification method [OCLC 2016a], the
WorldCat indexing system [OCLC 2016b], suggestions from our librarians, as well as
the description of the magazine by the publishers. We used overlapping methods to
disambiguate categories like “general,” which were sometimes assigned to titles by the
Dewey method. Table III in the appendix contains a summary of our dataset. Note that
the genres are fluid and could change depending on use.

3.1. Preprocessing of Images

The preprocessing of cover images was performed using the Matlab Image Processing
toolbox.2 For the scanned images, gamma correction was applied. We use 512 basic
colors obtained by quantizing the sRGB color space with 8 bins in each channel. Given
this color basis, each magazine cover (image) is then a histogram of these colors. We
chose sRGB mostly for processing convenience, as it has a cubic space and is thus
readily divided into bins. Conceivably, we could use the CIELab color space, which is
considered more perceptually uniform but creates computational challenges. Impor-
tantly, whenever we compare colors (for finding palettes close to color histograms, etc.)
we do convert to the CIELab color space and subjects see color palettes that are closest
to their respective color–word topics in CIELab space rather than sRGB. This dual
approach is a common practice in color applications; for example, Soli and Lenz [2010]
use sRGB for quantization prior to implementing applications in the CIELab color
space. To feed the images to LDA-dual, we scale them to 300 × 200 pixels using bicubic
interpolation. The down-sizing was done to reduce the computation without affecting
the distribution of the colors in the images.

3.2. Creating the Word Vocabulary

To capture the words to be associated with color distributions of the magazine covers,
the words on the covers were transcribed by hand. To create a word vocabulary, we first
prune the transcribed words (as described below) and then create a histogram of words.
Because a more meaningful vocabulary results in more meaningful topics, we filter out
special characters, numbers, common stop words3 (e.g., articles and lexical words), and
an additional handcrafted list of stop words (see Table IV in the appendix). Compound
words formed with a hyphen or dash are decomposed; both the separated words and the
original compound word are included. In this fashion, we defined a vocabulary of 9,929
words. A version of the Porter Stemming algorithm [Porter 1980] is used to equate
different forms of a word, for instance “elegant” and “elegance.” Finally, a mapping

1The preprocessed data is available at https://github.com/ali-design/ColorSemantics.git. Note however that
copyright concerns prevent us from distributing the raw data freely in many locales. Please contact us if you
would like to make use of the raw data in your own work.
2The MathWorks, Inc., Natick, MA.
3Provided by MySQL database, available at https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html.
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Fig. 2. Pink is used in all of these designs, despite the fact that each of these designs belongs to a different
context and genre of magazines. Magazine cover images used with permission [Glamour 2009b; Forbes
Magazine 2009; Technology Review 2009; Astronomy Magazine 2010].

from month to season is applied. In order to include the context and classes of the
magazines with the associated words, the periodical category to which each magazine
title belongs was added to the set of words. We collected these periodical categories from
the WorldCat indexing system, which is the largest international network of library
content and services [OCLC 2016b].

4. STATISTICAL MODEL

When ideating about visual design, the designer takes into account the topic or the
context within which he or she is asked to convey his or her message. For instance,
when the context is politics, the designer may tend to use darker, “heavier” and more
“formal” colors. However this is not the only factor, the words in the design also in-
fluence the designer’s choice of colors. Figure 2 illustrates that pink – which may be
stereotypically associated with feminity – has been used in a variety of magazines from
different genres. This observation suggests that each design’s theme might be a com-
bination of words and color distributions; and each design may include a proportion
of various themes. Our goal is to model these combinations of words and colors, and
infer proportions of these combinations in magazine cover designs. A similar intuition
has been argued in statistical topic modeling, specifically LDA [Blei et al. 2003], for
modeling word distributions in documents as proportions of different word topics.

LDA is an intuitive approach to infer topics from text data. As Blei et al. [2003,
2012] describe, instead of categorizing and exploring documents using tools such as
keywords, we may first categorize documents based on topics. This allows us to explore
topics of interest and find related documents. For example, a document about sociology
may include different topics, such as biology, evolution, history, and statistics, with
different proportions. Each of these individual topics can be viewed as a multinomial
distribution over a fixed vocabulary of words. Accordingly, each document, which can
be viewed as a bag-of-words, is a combination of these topics with some proportions.
Typically, a value for the number of topics is chosen by hand. The latent topics, as well
as the topic proportions of each document, are inferred by LDA using the observed
data, which are the words in the documents.

Just as word topics are distributions over words, one may think of color topics as dis-
tributions over colors. This way, we can model the associations between the color topics
and word topics and infer combined color–word topics, as we show in the next section.
Jointly inferring topics between two different domains requires the LDA framework
to be extended. Such an extension was recently proposed by Shu et al. [2009], for
identifying unique authors in bibliography databases.
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4.1. LDA-Dual Model for Color Semantics

In this section, we explain how to adapt the LDA-dual model proposed by Shu
et al. [2009] for color semantics. Our implementation4 of the model is an adaptation of
the Matlab Topic Modeling toolbox [Steyvers and Griffiths 2014; Griffiths and Steyvers
2004] for use in LDA (see Jahanian [2014] for relevant derivations).

Assume that there are K color–word topics denoted by k1, k2, . . . , kK and D magazine
covers denoted by d1, d2, . . . , dD. Let W denote the number of words in the vocabulary
and C denote the number of color swatches, where each swatch is a patch of color
defined by using its sRGB values.5 Moreover, let Md denote the number of words and
Nd denote the number of color swatches in magazine cover dd. Let wd,m denote the m-th
word in the d-th document and cd,n denote the n-th color swatch in the d-th document.
Each magazine cover includes some proportion of each word topic, as well as each color
topic. Let yd,m denote the word topic assignment to the word wd,m and zd,n denote the
color topic assignment to the color swatch cd,n. Note that these assignments are latent.
Also let ψyd,m and φzd,n denote the multinomial distributions of the word topics and the
color topics, respectively.

Each magazine cover includes some proportion of the color–word topics. These pro-
portions are latent, and one may use the K-dimensional probability vector θd to denote
the corresponding multinomial distribution for a document dd.

Let β, γ , and α be the hyper-parameters of the three Dirichlet distributions for the
color topics, word topics, and the proportions θd, respectively. Let Dirichlet(·) denote
the Dirichlet distribution, and Discrete(Dirichlet(·)) denote the discrete distribution
that is drawn from a Dirichlet distribution.

Given the above notation, the generative model for LDA-dual can be written as
follows:

(1) Draw K word topics ψk ∼ Dirichlet(γ ).
(2) Draw K color topics φk ∼ Dirichlet(β).
(3) For each document dd ∈ {d1, d2, . . . , dD}:

—Draw θd ∼ Dirichlet(α).
—For each word wd,m with m = 1, . . . , Md

—Draw yd,m ∼ Discrete(θd)
—Draw wd,m ∼ Discrete(ψyd,m)

—For each color cd,n with n = 1, . . . , Nd
—Draw zd,n ∼ Discrete(θd)
—Draw cd,n ∼ Discrete(φzd,n)

A graphical model for this generative process is illustrated in Figure 3, where the
shaded nodes denote observed random variables and the unshaded nodes are latent
random variables.

If we let φ = {φ1, . . . , φK}, ψ = {ψ1, . . . , ψK}, θ = {θ1, . . . , θD}, zd = {zd,1, . . . , zd,Nd},
yd = {yd,1, . . . , yd,Md}, z = {z1, . . . , zD}, y = {y1, . . . , yD}, w = {w1, . . . , wd}, and
c = {c1, . . . , cd}, then the joint distribution corresponding to the LDA-dual model above
can be written as

p (φ,ψ, θ , z, c, y,w) =
K∏

i=1

p (φi|β) · p (ψi|γ ) ·
D∏

d=1

p (θd|α) ·
(

N∏
n=1

p
(
zd,n|θd

)
p

(
cd,n|φ, zd,n

))

·
(

M∏
m=1

p
(
yd,m|θd

)
p

(
wd,m|ψ, yd,m

))
. (1)

4Available at https://github.com/ali-design/ColorSemantics.git.
5Recall that we discretize and use eight values for each of the three sRGB color channels. Therefore, C = 512.
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Fig. 3. Hierarchical Bayesian plate model for the LDA-dual model, which combines color and word topics.
Here, D is the number of magazine covers; K is the number of color–word topics; and Nd and Md are the
number of color swatches and words, respectively, in the d-th magazine cover.

Fig. 4. LDA is both a generative and inference model. This image is inspired by Steyvers and Griffiths
[2007].

Figure 4 provides a graphical illustration of the generative mechanism and the infer-
ence procedure described below. This figure is a symbolic representation of the model.
In each sub-figure, a cylinder represents a color–word topic. Each arrow represents
the probability of each cover being drawn from a given color–word topic. Each cover
includes a histogram of colors and a list of words (each word is superscripted by its
corresponding color–word topic). In the generative process, we know the distribution of
the color–word topics, and can produce the distribution of the colors and words on the
magazine covers. For instance, “Cover 1” is completely (with probability 1.0) generated
by color–word topic 1. “Cover 2” is generated by equal distributions of both “color–word
topic 1” and “color–word topic 2”. In the statistical inference mechanism, we only know
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the distribution of the colors and the words for each cover. We do not know (represented
by question marks) the color–word topics, their proportions, and the assignments of
the colors and words of each cover to these color–word topics.

4.2. Inference

Since c and w are observed, inference entails computing

p (φ,ψ, θ , z, y|c,w) = p (φ,ψ, θ , z, y, c,w)
p (c,w)

. (2)

Theoretically, the above distribution can be obtained by computing the joint prob-
ability distribution of the latent and the observed variables, and then computing the
marginal probability of the observations. In practice, however, topic modeling algo-
rithms approximate the result to bypass the computational complexity of the solution.
There are often two approaches for this approximation [Blei 2012]: variational infer-
ence [Jordan et al. 1999; Teh et al. 2006] and Markov chain Monte Carlo (MCMC) sam-
pling [Andrieu et al. 2003; Griffiths 2002]. We adapted MCMC-collapsed Gibbs sam-
pling from the Matlab Topic Modeling Toolbox [Griffiths and Steyvers 2004; Steyvers
and Griffiths 2014].

In this article, we set the number of topics to K = 12, with hyper-parameters α = 0.8,
and β = γ = 0.1. We chose β and γ to match the values used in the original version
of LDA applied to text documents [Griffiths and Steyvers 2004]. Also, we assume a
symmetrical distribution for the topics, and thus a higher value for α means each
cover is a mixture of most of the topics. Note that the 12 general categories (genres) of
magazines and the 12 topics (K = 12) are independent. There is no a priori relationship
between the number of genres (determined by the methods in Section 3) and the
topics produced by LDA-dual. Furthermore, note that the choice of hyper-parameters
in probabilistic models, such as the hyper-parameters of a Dirichlet Process Model,
affect the resulting model. It is possible to select parameters that maximize data
likelihood [Wallach et al. 2009]. However, other studies have shown this does not
necessarily discover topics that correspond to human intuitions [Chang et al. 2009].
In this article, we present our approach for validating the results according to human
judgment. Importantly, given our parameter choices, a reader should readily be able to
reproduce our findings.

Figure 5 illustrates the 12 color–word topics inferred by the model for the given
parameters. Note that because each color–word topic includes proportions of the color
basis and the vocabulary words, in this figure, we visualize a topic as a pair of colors and
words histograms. The visualized histograms just illustrate the principal components.

Note that in this figure, next to each word topic (e.g., “Word Topic 1”), there is a
distribution over some colors representing the associated color topic. Each word topic
and color topic has some proportion in the entire dataset (e.g., 0.0483 for “Word Topic
1”). The summation of all the 12 word topics proportions is 1. Similarly, all the 12 color
topic proportions add up to 1. Here, just for visualization, we show the length of each
color topic based on its ratio to the “Color Topic 4” (in color–word topic k4), which has
the largest proportion.

Figures 6(a)–(c) illustrate the proportions of each of the inferred color–word topics
for three magazine title designs in the dataset. For instance, note that Vogue as a
fashion magazine has k8 and k9 as two of the dominant color–word topics. As can
be seen, k8 and k9 contain words such as “women,” “fashion,” “love,” and “beauty,”
whereas the corresponding color histograms contain pastel and pink colors, which are
often associated with fashion magazines. On the other hand, Horticulture, which is
a nature magazine, has the highest proportion of k1, which pre-dominantly contains
shades of green. The words in k1 include gardening-related words such as “gardens,”
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Fig. 5. Color–word topics inferred by the LDA-dual model. Illustration of the 12 color topics in the middle,
and their corresponding 12 word topics; 6 on top for the first 6 color histograms from left, and the other 6 on
the bottom. Note that for visualization, only the principal elements in the histograms are shown. Also note
that the numerical weight of each word topic is shown next to heading of each word topic histogram.
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Fig. 6. Proportions of each of the inferred color–word topics for three sample magazine title designs in the
dataset. (a) Horticulture, (b) Time, and (c) Vogue magazines (including all the issues in the dataset) are
shown. Note that k’s are the same as in Figure 5 (and Figure 8). See Figure 16 for all of the magazines.

Fig. 7. Visualization process for the inferred color–word topics. To visualize the color–word topic histograms
inferred by the model (see Figure 5), we use five-color palettes and word clouds as proxies to color histograms
and word histograms, respectively. (a) The magazine cover dataset. (b) Applying the LDA-dual model on the
dataset. (c) Output of the LDA-dual – color–word topics. (d) Extracting color palettes from the dataset to be
used in Equation (3) for finding the closest color palettes to each color topic histogram. *See Section 5.1 for
the color theme extraction details. (e) The closest color palettes (here only two), to the color histogram, and
the word cloud for the word histogram.

“landscapes,” and “plants.” See Figure 16 for all 71 magazine titles. In addition, Table II
in the appendix illustrates the proportions of the top 10 magazine titles in the color–
word topics.

5. INTERPRETING THE MODEL OUTPUT

Visualizing the results of LDA is a topic of research [Chaney and Blei 2012; Chuang
et al. 2012]. Chaney and Blei [2012], for example, suggest a visualization mechanism
for exploring and navigating through inferred topics from LDA and their corresponding
documents. Although their work does not completely address the usability evaluation
of this mechanism, it inspired our visualization mechanism for our user study. In order
to evaluate the color semantics hypothesis, we need to display both the color histogram
and the word histogram to the participants in our user study in a comprehensive,
yet unbiased fashion. We address this via a two-step process. The word histograms
are converted to word clouds, whereas the color histograms are converted to five-color
palettes. Figure 7 illustrates the visualization process. We discuss our choices for colors
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and words, and also describe our implementations for each decision in the two following
sections.

5.1. From Color Histograms to Color Palettes

We use five-color palettes as proxies to represent each of the color histograms in
Figure 5. That is, we chose to match five-swatch color palettes to the 512-bin color
histogram returned by the model. This was for several key reasons. First, a 512-bin
color histogram is perceptually hard to be shown to the participants, given that many
colors might be invisible at each level of visualization. In other words, such a color
histogram encapsulates too much of information to be comprehended. On the other
hand, it is not practical to show the entire histogram to a user for his/her usage in
an application. Therefore, we need to downsample the histogram. Second, five-color
palettes are standard in the design industry and prior computer science work, and
thus can be easily obtained [Murray et al. 2012; Lin and Hanrahan 2013; Adobe Kuler
2016; ColourLovers 2016, etc.]. Designers argue that using more than 5 can lead to
clutter (see, e.g., Samara [2007]), and most magazines use 2–3 additional colors (e.g.,
for typography and bells-and-whistles) beyond those contained in the images (from
interviews with designers [Jahanian 2011]).

The corresponding color palettes of the color histograms are drawn from a pool of five-
color palettes, one for each magazine cover in the dataset. To extract color palettes from
the images, we used the color theme extraction code provided by Lin and Hanrahan
[2013]. In their implementation, the algorithm requires a saliency map of the given
image (they used the code from Judd et al. [2009]), as well as the segmentation of the
given image (they used the code from Felzenszwalb and Huttenlocher [2004]). In our
work, we however used the saliency map code from Harel et al. [2007] since it was
easily accessible. Note that these color palettes are not the input to the model; they are
only used to visualize the inferred color histograms.

In order to find the 5-color palettes that are closest to the color topic histograms, we
define a similarity metric as follows: Let S512 denote a color topic histogram with the 512
color basis defined earlier, and S5 denote a 5-color palette. An intuitive similarity metric
is the Euclidean distance between color swatches of S512 and S5. Among the possible
color spaces, we choose the CIELab color space with a D65 reference white point. It
is considered to be a perceptually uniform space, where �E around 2.3 (the distance
between two colors) corresponds to one JND (Just Noticeable Difference) [Sharma
2002].

Defining the color similarity distance problem as a bipartite graph matching between
S512 and S5 with 512 and 5 nodes, respectively, we find the minimum distance cost of
this graph using the Hungarian method [Kuhn 1955]. Equation (3) defines the weighted
Euclidean distances dWED between the nodes of these two graphs. Here, the weight
wi corresponds to the weight of the i-th color in the color topic histogram S512, and
‖S512

i − S5
j ‖2 denotes the distance in CIELab between the i-th color from S512 and

the j-th color from S5. This metric can be thought as a version of The Earth Mover’s
distance suggested by Rubner et al. [2000] for image retrieval, with the weight vector
representing color importance:

dWED =
512∑
i=1

1
wi

5∑
j=1

∥∥S512
i − S5

j

∥∥
2. (3)

Computing dWED for a given color topic histogram and all five-color palettes, we can
choose the closest of them as proxies to the histogram (see Figure 7). In the user study,
we present two series of questions for the first and the second closest color palettes,
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Fig. 8. Alternative visualization of the 12 color–word topics shown in Figure 5. In each color–word topic
(e.g., k1), the top panel shows the color histogram and the second and third color panels show the top two
color palettes we extracted from this histogram. The word topics are visualized in the bottom panel as word
clouds, with the size of a word being proportional to its weight.

because just one color palette may not provide an adequate visualization of the entire
topic histogram. See Figure 8 for the entire color–word topics.

Note that we could have simply chosen the top five colors represented in the his-
togram, but this has a few shortcomings. First, this would not take into account the
variability in color distributions. One could use k-means clustering to get a repre-
sentative set of “average” colors, but simply averaging color values often results in
perceptually different (and thus non-representative) colors [Lin and Hanrahan 2013].
Another approach might be to choose five peaks or modes in the histogram, according
to some measure. This suffers the same problem of picking the top five since there is
no guarantee of capturing the natural perceptual variability in the color distributions.
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Fig. 9. Flow of the user study.

5.2. From Weighted Bag-of-Words to Word Clouds

Figure 7 illustrates how we visualize each word topic histogram with a word cloud. The
word cloud (or tag cloud) is a visualization technique used to show the relative weights
of words through different font sizes. The weights resemble frequency of occurrence or
importance of the words in a word dataset. A suite of word cloud algorithms and their
usabilities is discussed in Seifert et al. [2008]. Because of the popularity of word clouds
in visualizing categories, and the fact that words are randomly scattered over a layout,
we used this technique in our user study. Using wordle,6 we generated black and white
word clouds to avoid introducing any color bias. Note that although we chose two color
palettes for each color topic, we developed only one word cloud for each word topic.
This is because we are downsampling the color histograms a lot more than the word
histograms, and it makes sense to test the colors with a stronger test (two palettes per
color histogram).

6. USER STUDY

The main aim of this section is to validate the output of the probabilistic topic model.7
In particular, we want to understand if casual users (who are not necessarily design-
ers) agree with the association between color combinations and linguistic concepts
produced by our model. We conducted two experiments to study how users match a
given color palette with the 12 word clouds – Experiment I (color palette to word cloud
direction) – and vice versa – Experiment II (word cloud to color palette direction). Since
Experiment I was our main survey with a larger number of participants, we discuss
our evaluation framework through this experiment. We then use the same framework
and notation to report Experiment II. We conducted the second experiment to comple-
ment the first experiment; however, we note that it has a relatively smaller number of
participants.

6.1. Experiment I

6.1.1. Stimuli and Procedure. Figure 9 illustrates the flow of the survey. In order to
simulate a matching experiment between pairs of color and word topics, we designed
a question as follows: One five-color palette was shown in the left side of the screen,

6http://www.wordle.net.
7The data collected for the experiments is available at https://github.com/ali-design/ColorSemantics.git.
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and three shuffled and randomly chosen word clouds, as well as a “None of the above”
option were shown on the right side arranged in vertical order. Each question was a
multiple choice (represented by multiple checkboxes). For each question, we asked the
participant to choose as many word clouds, as in his/her opinion applied to the five-
color palette shown. If the participant felt that none of the word clouds applied to the
five-color palette, he/she could choose “None of the above.” Among the three randomly
drawn word clouds, one was the word cloud inferred from the model.

The survey was divided into two subsets of questions. The reason for this is that, if
otherwise, some participants may lose interest in finishing the experiment. This obser-
vation was made in the pilot experiment.8 More specifically, we created 24 questions
for the first and second closest 5-color palettes corresponding to the 12 inferred color
topics. However, to avoid exhausting the participants, we randomly drew 8 questions
from the 12 questions of the closest color palettes and asked the participants to answer
them. Then, we asked the participants if they would like to continue by taking another
set of 8 questions (this time drawn from the 12 questions of the second closest color
palettes). Of all participants, 61.35% of the users chose to continue, and answered all
16 questions.

6.1.2. Participants. Our survey9 was advertised through social networks and univer-
sities (Purdue and MIT) email networks. Because trials were randomly ordered, we
included all completed trials from all participants (except the few exceptions listed
below), regardless of how many trials a participant completed. This survey attracted
1091 participants. The data from eight participants were removed because they left
comments that claimed they had trouble viewing the images on their display. In the
early stages of the survey, for the first 177 participants, the “correct” word cloud was
not always shown as a possible answer (the word cloud derived from the same topic as
the color palette on that trial). We fixed this error for the rest of the participants, and
removed 167 trials in which this condition happened. This resulted in 846 participants
who completed at least one trial. Over all of these participants, a total of 9,098 trials
were completed. Of those trials, 5,523 were in the first subset of questions, and 3,575
in the second.

We collected 846 responses from 481 (56.86%) females, 361 (42.67%) males, and 4
others (0.47%), in the range of 18–80 years (with mean = 31.04 and standard devia-
tion = 12.10). The participants are from 70 countries and natively speak 66 different
languages, with the majority from the United States (60.05%). There are 340 (40.19%)
participants who have lived in more than one country. There are 346 (40.90%) par-
ticipants with college degrees, 445 (52.6%) with graduate degrees (graduate school,
PhD, and postdoctoral), and 55 others (pre-high school, high school, and professional
degree). The majority of the participants, 705 (83.33%) are non-designers. In contrast,
there are 129 (15.25%) participants with three or more years of experience in visual
design (including graphic design, interior design, and textiles.) Participants spent on
average 6.27 (standard deviation = 3.00) hours per day on the Internet.

6.2. Experiment II

6.2.1. Stimuli and Procedure. We used the same procedure as we did for Experiment I.
The only difference was that we showed a word cloud in each question and examined
the color palettes in the multiple options for the answers. That is, one word cloud
was shown in the left side of the screen, and three shuffled and randomly chosen five-
color palettes (including the correct one), as well as a “None of the above” option were

8This pilot experiment is hosted at https://purdue.qualtrics.com/jfe/form/SV_7WmxYF575nFx7DL.
9https://purdue.qualtrics.com/jfe/form/SV_1AqhT38FJKZ5Vrf.
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shown on the right side arranged in vertical order. Each question was a multiple choice
(represented by multiple checkboxes). For each question, we asked the participant to
choose as many five-color palettes, as in his/her opinion applied to the word cloud
shown. If the participant felt that none of the word clouds applied to the world cloud,
he/she could choose “None of the above.”

6.2.2. Participants. This survey10 attracted 447 participants. The data from four par-
ticipants were excluded based on comments claiming they either had trouble viewing
the images or were severely visually impaired. Of the remaining participants, 378 com-
pleted at least one trial. In the end, 4,447 trials were kept. Of those, 2,772 trials in
subset 1 and 1,675 in subset 2 were completed by all participants.

We collected 378 responses, with 39.15% male, 60.05% female, and 0.79% others, in
the age range of 18–70 years (with average 24.53, and standard deviation 8.22). The
participants are from 35 countries and natively speak 41 different languages, with the
majority from the united States (75.13%). There are 118 (31.22%) participants who
have lived in more than one country. There are 179 (47.35%) participants with college
degrees, 166 (43.92%) with graduate degrees (graduate school, PhD, and postdoctoral),
and 33 others (pre-high school, high school, and professional degree). The majority
of the participants, 332 (87.83%) are non-designers. In contrast, there are 36 (9.52%)
participants with three or more years of experience in visual design (including graphic
design, interior design, and textiles.) Participants spent on average 5.80 (standard
deviation = 2.66) hours per day on the Internet.

7. INTERPRETING THE USER STUDY

In this section, we explain the statistical inference mechanism that we used to un-
derstand the user responses for Experiment I. We then use the same framework and
notation to report the responses of Experiment II.

7.1. Summary of Basic Statistics on Correct Responses

Before accounting for detailed statistical results, we first show the basic strength of the
associations between palettes and their corresponding word clouds in the participant
data. In this section, by “correct” response, we mean the participant’s choice agreeing
with the model’s output.

Participants in Experiment I, pooled over both subsets, were 1.68 times more likely
than random guessing to choose the “correct” word cloud for a given color palette. This
is the ratio of how many times participants chose the correct word cloud to how many
would be expected if each participant’s per-trial responses were randomized (using
the same number, but not order, of choices per trial). This effect is highly significant
(p < 5 × 10−4, two-sided permutation test) for all but two color–word topics (topics k2
and k12 were not significantly above chance). The results are summarized in Table I.

Analogously to Experiment I, participants in Experiment II were 1.70 times more
likely to choose the “correct” color palette for a given word cloud than chance. This
effect is significant for all topics (p < 5 × 10−4, two-sided permutation test) except
topics k2 and k12. These results are also available in Table I.

7.2. Statistical Model

In order to interpret the results in more detail, we present a statistical analysis.
First, we define some notation. Let ci denote the event that the i-th color palette
was displayed. Also, let w j denote the event that the user selected (clicked on) the j-th
word cloud, and uij denote the probability that the j-th word cloud was selected by the

10https://jfe.qualtrics.com/form/SV_8B9qc7nqnUKPuEl.
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Table I. Permutation Test Results

*Indicates significantly greater than random
guessing at p < 5 × 10−4, two-sided permuta-
tion test.

user in response to the i-th color palette. In order to compute uij we note that

uij = Pr(w j |ci). (4)

There are three possible positions p ∈ {1, 2, 3} at which a word cloud can be displayed.
Let djp denote the event that the j-th word cloud was displayed at position p, and let
w jp denote the event that the user selected the j-th word cloud which was displayed at
the p-th position. Then,

uij =
∑

p∈{1,2,3}
Pr(w jp|djp, ci) · Pr(djp|ci). (5)

If dj denotes the event that the j-th word cloud was selected for display and dp
j the

event that it was displayed at position p, then

Pr(djp|ci) = Pr(dj |ci) · Pr(dp
j |ci). (6)

According to our experimental design, each word cloud has an equal probability of
appearing in any one of the three positions. Therefore,

Pr
(
dp

j |ci
) = 1

3
. (7)

On the other hand, we always select the i-th word cloud (the true word cloud according
to our model) for the i-th color palette. The other two slots are filled by selecting any
two of the remaining 11 word clouds uniformly at random. Therefore,

Pr(dj |ci) =
{

1 if i = j
2
11 otherwise.

(8)

All that remains is to estimate Pr(w jp|djp, ci). To estimate this quantity, we utilize
the technique known as “cascade click modeling” [Govindaraj et al. 2014]. Cascade click
modeling was originally introduced to model a user’s back and forth clicks on a list of
URLs (resulting from an online search query), regardless of their content. This model
allows us to simultaneously estimate two quantities: the first is position bias bp, the
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probability that the p-th position is examined by a user; the second is rij , the intrinsic
relevance of the word cloud j to the color palette i. In other words,

Pr(w jp|djp, ci) = rij · bp, (9)

and by using (5) and letting qij = ∑
p∈{1,2,3} Pr(djp|ci) · bp, we can write

uij = rij ·
∑

p∈{1,2,3}
Pr(djp|ci) · bp = rij · qij . (10)

Note that bp can be pre-computed as follows:

bp = mp

m
, (11)

where m denotes the total number of trials (each question in our survey is equiv-
alent to one trial), and mp denotes the number of times the word cloud at po-
sition p was selected in any of the trials. In Experiment I, we found the posi-
tion bias of the options (in vertical order) for the first set of the questions to be
0.3308, 0.3797, 0.3473, 0.147, and 0.4254, 0.3932, 0.3564, 0.1269 for the second set of
the questions. Note that for each set, these numbers do not sum up to 1, because of
the fact that the participant could choose more than one word cloud. The position bias
for Experiment II is 0.337, 0.4173, 0.3465, 0.1083 for the first set of the questions, and
0.4641, 0.3654, 0.3434, 0.1319 for the second set of the questions.

These numbers indicate that the position bias for each option is not equal, and
even though we shuffled the three choices of word clouds in the first three vertical
positions, we need to account for the position bias. We note that the fourth option –
“None of the above” – is clicked less than the other options. This indicates that our
participants wished to provide an answer, as well as they may have not thought that
the associations between the word clouds and the colors were too abstract. We also
note that in the second set of the questions, the fourth number is lower than the one
in the first set of questions. This perhaps means that the participants who chose to
participate in one more set of the questions in the survey were more confident with
their conclusions.

As the last step, let mi denote the number of trials in which the i-th color palette
was displayed, and mij denote the number of trials in which the i-th color palette was
displayed and the j-th word cloud was selected. We can assume that the trials are
independent, and therefore the probability of observing this data under model (10) can
be written as

Pr(mi, mij) = (rij · qij)mij (1 − rij · qij)mi−mij . (12)

The maximum likelihood estimate for rij · qij is simply mij

mi
, from which we can infer r̂i j ,

the maximum likelihood estimate for rij , as

r̂i j = mij

mi · qij
. (13)

7.3. Analyzing the Results for Experiment I

Figure 10 illustrates two relevance matrices. The matrices correspond to the inferred
relevance of the first and second closest color palette, respectively, to the word cloud
produced by LDA-dual. The rows correspond to color palettes, as proxies to color topics
histograms, and the columns correspond to word clouds. The (i, j)-th elements of these
matrices are the intrinsic relevance values r̂i j , computed from the observed responses
of the participants using the model described in the previous section. Higher values of
r̂i j mean that the users found a high correlation between the i-th color palette and the
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Fig. 10. Relevance matrices R̂1 and R̂2 for the first and second set of questions, respectively. For the first
set of questions, the participants were shown the closest palettes identified by LDA-dual. For the second set
of questions, the participants were shown the second closest palettes identified by LDA-dual. The elements
of these matrices are the estimated intrinsic relevance of associations between colors and words, calculated
from the participants’ responses. The higher the value, the greater the intrinsic relevance associated by the
users. Ideally, the diagonals should contain the highest values. Whenever an off-diagonal entry is larger
than the corresponding diagonal entry in its row, it is marked yellow in the figure.

j-th word cloud. If the participants find the word cloud produced by our model to be
the most relevant for a given color palette, then the diagonal entries, marked in blue,
should contain the highest values. Whenever an off-diagonal entry is larger than the
corresponding diagonal entry in its row, it is marked yellow in the figure.

Note that for the first set of 12 color palettes, participants selected the “None of
the above” option on average for 14.70% of the trials. The minimum was 6.21%, which
occurred for k1; and the maximum was 27.54%, which occurred for k2. For the second set
of 12 color palettes, the average was 12.69%. The minimum was 1.34%, which occurred
for k1; and the maximum was 21.81%, which occurred for k2. Frequent selection of
the “None of the above” option for a given color palette suggests that participants
had more difficulty associating this palette with the word clouds that were shown. In
the relevance matrices, we do not compute the numbers for each color palette against
the “None of the above” option. Thus, the matrices do not contain the 13-th column.
However, if the participant has selected “None of the above” as well as other options, we
take into account those options, effectively treating the “None of the above” response
as a vote of lower confidence.

The relevance matrices in Figure 10 show that most diagonal elements are larger
than their corresponding off-diagonal ones. This indicates a strong correlation between
the results of our application of LDA-dual and participants’ opinions (also see the next
section for an aggregate measure). It is interesting to note that not all diagonal elements
have the same value. r̂1

11, for example, has the largest diagonal value, suggesting that
“green” and “garden” are closely associated by most participants.

There are a few color palettes such as c2 in R̂1 where the users assign higher relevance
to word clouds other than the one produced by the LDA-dual model. To understand this,
note that in Figure 8(b), the first five-color palette which is c2 predominantly contains
shades of red and black. Users assign higher relevance to word clouds w8 and w9,
which are about “sex” and “beauty.” In our dataset, however, the red and black color
combinations are often used by news magazines such as Time and The Economist, and
computer magazines such as PC Magazine. One can compare other color palettes such
as c12 in R̂1 and c8 in R̂2 to infer why there is a mismatch between the model output
and the relevance values assigned by the users. Moreover, these results illustrate
the importance of conducting a user study; domain-specific color palettes and their
associated linguistic concepts may not always transfer to a general context.
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Fig. 11. Aggregated measures for relevance matrices R̂1 and R̂2. Column D̄ is the diagonal dominance
measure computed according to (16). Column S̄ is the diagonal separation computed according to (19).
Overall, these two separate measures support the conclusion that on average, the diagonal elements in the
relevance matrices are stronger than the off-diagonal elements.

To understand differences between female versus male and non-U.S. versus U.S.
participants, we computed the corresponding relevance matrices (see Figure 19). Com-
paring these matrices with Figure 10, we do not observe any striking differences. This
suggests that our results do not depend strongly on the gender or cultural background
of the users. When we compare designers versus non-designers, however, we find that
there are more zero values in the off-diagonals for designers. This indicates that design-
ers are more consistent with each other in color–word associations, perhaps because
of their training [Whitfield and Wiltshire 1982]. We directly compare the populations
(male versus female, U.S. versus non-U.S., designer versus non-designer) in Figure 21
in the appendix.

7.4. Aggregate Measures

We have defined two different measures to assess the strength of the relationships of
elements in a matrix as indicated by the magnitude of the diagonal elements relative
to the off-diagonal elements in each row.

For each N by N relevance matrix R̂1 and R̂2, let rij be the (i, j)-th element. The
first measure is the diagonal dominance D. For each row, it is simply the ratio of the
diagonal element in that row to the average value of the off-diagonal elements in that
row:

Di = rii

¯́ri
, (14)

where rii is a diagonal element, and ¯́ri is the mean of off-diagonal elements:

¯́ri = 1
N − 1

N∑
j=1
j �=i

rij . (15)

To get a summary assessment, we can average the diagonal dominance over all the
rows of the matrix:

D̄ = 1
N

N∑
i=1

Di. (16)

For the two matrices R̂1 and R̂2 in Figure 10, the average diagonal dominances are
2.06 and 1.99, respectively (see Figure 11). So, on average, the diagonal element is
about twice as large as the other elements in the row. This suggests that despite the
wide variability of the data in the matrices, the diagonal elements tend to dominate.

The second measurement is the diagonal separation S. It is also defined for each row,
and is also a ratio:

Si = rii − ¯́ri

r σ́i
. (17)
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Fig. 12. Relevance matrices R̂1 and R̂2 for the first and second set of questions, respectively, in Experi-
ment II. For the first set of questions, in each question, the participants were shown a word cloud versus its
associated closest palettes identified by LDA-dual. For the second set of questions, for each question, the par-
ticipants were shown a word cloud versus its second closest palettes identified by LDA-dual. The elements of
these matrices are estimated intrinsic relevance of associations between words (rows) and colors (columns),
calculated from the participants’ responses, using the same statistical model described in Section 7.2.

The numerator is the difference between the diagonal element and the mean of the
off-diagonal elements in that row. The denominator is the standard deviation of the
off-diagonal elements in that row:

r σ́i =

⎛
⎜⎜⎝ 1

N − 1

N∑
j=1
j �=i

(
rij − ¯́ri

)2

⎞
⎟⎟⎠

1
2

. (18)

To get a summary assessment, we can again average the diagonal separation over
all the rows of the matrix:

S̄ = 1
N

N∑
i=1

Si. (19)

As Figure 11 summarizes, for matrix R̂1 (Figure 10(a)), the average diagonal sep-
aration is 1.71. Thus, on average, the diagonal element is more than one and a half
standard deviations away from the mean of the off-diagonal elements. For the second
matrix, R̂2 (Figure 10(b)), the average diagonal separation is 1.52. Although this is
smaller than it is for the first matrix, it still indicates good separation.

Overall, these two separate measures support the conclusion that on average, the
diagonal elements are indeed stronger than the off-diagonal elements.

7.5. Analyzing the Results for Experiment II

Figure 12 illustrates the relevance matrices of the responses in Experiment II. For
the first set of 12 color palettes, participants selected the “None of the above” option
on average for 10.81% of the trials. The minimum was 4.27%, which occurred for k1;
and the maximum was 17.57%, which occurred for k12. For the second set of 12 color
palettes, the average was 13.18%. The minimum was 1.44%, which occurred for k1;
and the maximum was 29.79%, which occurred for k8. For the two matrices R̂1 and
R̂2 in Figure 12, the average diagonal dominances are 2.36 and 2.61, respectively.
This indicates that, on average, the diagonal element is more than twice as large as
the other elements in the row; the diagonal elements do tend to dominate. For ma-
trix R̂1 (Figure 12(a)), the average diagonal separation is 2.38. For the second matrix,
R̂2 (Figure 12(b)), the average diagonal separation is 2.17, suggesting a high level of
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separation between diagonal and off-diagonal elements for both matrices. Overall,
these two separate measures support the conclusion that on average, the diagonal ele-
ments are stronger than the off-diagonal elements. Therefore, these aggregate statistics
show that for both Experiments I and II, participants favored the color–word associa-
tions discovered by our model.

It is interesting to note that some participants in Experiment II mentioned preferring
certain palettes over others, based purely on aesthetics and not the task. Any effects
of such preferences are not readily observed in the data, however. Furthermore, just
as for Experiment I, we compared the data from subpopulations (male versus female,
non-U.S. versus U.S., designer versus non-designer) of participants in Experiment II
(Figure 21). We did not find any striking differences between the subgroups.

8. APPLICATIONS

Understanding of color semantics as represented by color–word topic modeling could
be useful for a number of real-world applications. Here, we give some examples. Note
that we have not yet conducted formal user studies with these applications; our in-
formal use, however, has shown them to be useful. Although they are by no means
“finished,” we argue that they demonstrate the value of color semantics and motivate
future development of tools. We have implemented these applications (except pattern
recoloring, see Section 8.1.2) as prototypes in Matlab.

8.1. From Semantics to Color Palettes

Effectively selecting color palettes is important for many domains, including product
design, image recoloring based on color mood, image retrieval, and visual feature-
based recommendation systems. In visual design, for instance, the user needs a color
combination that is both appealing and aligned with the purpose of design [Samara
2007]. This is particularly important for a non-designer, who may have little training
in how to choose a good color palette. Nonetheless, designers may also prefer to use
automatically generated examples as inspiration (see, e.g., Starmer [2005]). There
exist several online communities for color palette design (e.g., Adobe Kuler [2016];
ColourLovers [2016]), each with millions of user-created, named, and rated palettes.
As we mention in the second-to-last paragraph of Section 1, current online palette
design communities only have sparse, user-created labels, that usually lack semantic
information [O’Donovan et al. 2011]. Understanding the associations between colors
and linguistic concepts provides a more meaningful and tractable way to find palettes.
Since LDA-dual relates sets of colors to sets of words, we can map user-input words to
retrieve color palettes for use in design.

8.1.1. Recommending Color Palettes. Our model’s inferred color semantics can be applied
directly to color palette recommendation. Consider a scenario in which the user wishes
to find a color palette for a tech magazine’s edition on how developments in material
engineering change what manufacturers are using to make dresses. Figure 1 illustrates
such a scenario, where the user queries for “technology” and “fashion.” The user can
also provide weights to each word, e.g., 80% to “technology” and 20% to “fashion.” This
enables a richer and more customized way to find semantically appropriate palettes.
As discussed in Section 2, unlike the current state of the art in color palette recommen-
dation, we incorporate the knowledge embedded in designers’ work and rank palettes
both extracted from our dataset as well as those from any existing database of palettes,
like Adobe Kuler or ColourLovers.

The text-input query is mapped to the word topics, and then to their corresponding
color topics. We weight and map these color topics to a ranked set of color palettes in a
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Fig. 13. Pattern recoloring using color semantics. We removed the cover lines of a Science magazine cover
in (a) and recolored it with color palettes derived from the terms “shop” (b, c), “sport” (d, e), and added
thematic titles. Magazine cover image used with permission [Science Magazine 2013] The recoloring method
is from Lin et al. [2013b].

pool of color palettes (see Figure 1) created from the magazine dataset (see Section 3.1).
The user can then choose his/her preferred color palettes from the recommended set.

In short, the tool works by creating a color histogram which is the weighted sum
of the color histograms from color–word topics discovered by LDA-dual. There are two
sets of weights. The first is a weighting based on how often the input word occurs in
the word histogram of each color–word topic. For example, if the word “technology”
occurs twice as often in topic 1 than topic 2, the color histogram from topic 1 will be
weighted twice relative to topic 2. These weighted histograms are combined to create
a histogram for each user-input word. The resulting histograms are then themselves
weighted based on the user-input weight per word. If the user input a weight 80% for
“technology” and 20% for “fashion,” the “technology” color histogram would be weighted
four times that of the “fashion” histogram, and they would then be combined into one
color histogram. The tool then computes the Euclidean distance of the weighted color
histogram to each color in the five-color palettes from our database, using [Lin and
Hanrahan 2013], just as described in Section 5.1. The weighted color histogram has
512 elements, most of which are negligible. For this reason, prior to finding the nearest
palettes to the weighted color histogram, we truncate the weighted color histogram to
include only the 10% largest color bins, as this gives us nearly identical results using
the whole histogram, but is an order of magnitude faster to compute.

Furthermore, because the color palettes are derived from magazine covers, we can
easily retrieve the covers that correspond to a set of recommended palettes determined
from the above method (see Figure 1). Such design examples can be utilized in creativity
support tools [Shneiderman 2009] and to facilitate design prototyping [Dow et al.
2010].

8.1.2. Recoloring Patterns. Designers regularly modify color themes of existing designs
to impart new meanings. Part of this color modification may involve recoloring an
image [Lin et al. 2013b], transferring a color theme to an image [Murray et al. 2012],
or enhancing the color theme of an image [Wang et al. 2010]. We suggest an application
of color semantics for pattern recoloring (Figure 13), based on techniques introduced
by Lin et al. [2013b]. Figure 13(a) illustrates an original magazine cover from the
Science magazine. Using the associations embedded in our color–word topics, we are
able to accept a user query, map it to the word topics, and use a five-color palette as a
representative of this color topic to recolor the original pattern. Figure 13 illustrates
the results of recoloring the original pattern using “shop” (b) and (c), and “sport” (d)
and (e) queries, respectively.
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Fig. 14. Image retrieval using color semantics. (a) “beach” inspired images in a dataset of interior design
images. (b) “gardens” inspired images in the same dataset. The interior design dataset is retrieved from
scraping the House & Garden website [House&Garden 2016]. Image (a)-3 used with permission [Walker
Greenbank 2016], (b)-2 (left) [Linwood Fabric 2016], and the rest [House&Garden 2016].

8.2. Image Retrieval

As discussed in Section 1, our work targets the “gap” of automatically connecting me-
dia to semantic information. Image retrieval is a way to showcase how we traverse
the gap in the opposite direction: going from semantic information in the form of text
to media in the form of images. Our approach provides a natural way to incorporate
high level image features into current image retrieval algorithms. Figure 12 illus-
trates an application of our inferred color semantics in image retrieval. Consider a
scenario in which the user makes a query in an image search community, e.g., Pinter-
est.com [Pinterest 2016], Flickr.com [Flickr 2016], etc., about “interior design.” The site
will almost invariably suggest an overwhelming number of images. In order to explore
and navigate through the retrieved images, however, the user can request a subset
of “gardens”-inspired images; using color semantics, we are able to map this query to
the color–word topics. We can then map the combined color histograms to rank the
already retrieved images based on how well they represent “gardens,” similarly to how
we retrieve palettes and design examples in the previous section. We show the results
of this application in Figure 14 for “beach” and “gardens” images related to interior
design.

8.3. Color Selection

Users could utilize color semantics to more intuitively select regions of color within
an image. As Heer and Stone [2012] note, the image editing community often uses
tools to select subsets pixels of a certain color or color distribution. They suggest tools
for selecting colors in images using color name queries. Building upon this concept,
we extend the idea one step further and demonstrate the usage of our inferred color
semantics for this type of color selection tool. In our case, we use the user’s query and
map it to the set of pixels that are relevant to not just the queried word, but also
other semantically related words. Figure 15 illustrates this kind of interaction. Fig-
ure 15(a) is the original image, a screenshot of a travel agency website [TripAdvisor
2014]. A user may be interested to know what color regions have contributed to the
concepts of “travel” and “trip” in this image. Figure 15(b) represents the pixels selected
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Fig. 15. Image color selection using color semantics. (a) The original image, (b) colors that contribute to
“travel” and “trip” in the original image. Image from the home page of Tripadvisor.com, used with permis-
sion [TripAdvisor 2014].

by our algorithm for these regions, while turning the other regions to grayscale. Note
that in order to find these color regions, we map the users queries to the word top-
ics, and preserve their associated color topics in the image, similar to the previous
applications.

9. CONCLUSION AND FUTURE WORK

The goal of visual design is both to convey a message and to be aesthetically appealing.
We used data mining to investigate how designers associate colors with linguistic
concepts. We collected high quality examples of professional designs, resulting in the
largest dataset to date of magazine covers with associated text transcription. We then
adapted LDA-dual, an extension of the popular LDA topic model, to simultaneously
model designers’ choice of both colors and words for the magazine covers. We used a
crowdsourcing experiment to verify the model’s color–word topics. The results confirm
that our model is able to successfully discover the association between colors and
linguistic concepts. This closes the loop of our design mining system, from data to
inference to validation.

Our work demonstrates a new methodological approach to color semantics and de-
sign. As this is a first pass at using probabilistic models to formalize designers’ in-
tuitions about color, we made several assumptions in order to get tangible results;
future work should study in more detail and optimize these assumptions. For the pur-
poses of this study, we consider semantics to be the associations that designers create
between and within groups of colors and words. Our instantiation of LDA-dual does
not explicitly model higher-order semantic relationships, such as the word order in
a cover line or the spatial distributions of various colors, that exist in design exam-
ples. Future work extending the model to cover more variables is required to uncover
these structures. For instance, our method for generating five-color palettes from the
magazine covers explicitly uses a measure of color saliency [Harel et al. 2007], which
in turn affects the color-proportion weighting (Equation (3)) used by the model. This
method, however, does not capture the spatial layout of color or how color is used dif-
ferently for foreground and background elements. One extension of our model could be
to explicitly represent the saliency of colors or words as an independent input to the
model.

Furthermore, since LDA-dual can combine words and topics into an arbitrary
number of clusters, one must choose the number of clusters. It is not obvious a priori
how many clusters to choose, nor how to optimize this number. Larger numbers of
clusters generally result in higher levels of granularity. We found that for our data, 12
topics produced an intuitively parsimonious set of clusters. In the appendix, we show
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the results of finding 6 topics (Figure 18 in the appendix), and 24 topics online.11 Ul-
timately, one could create interactive tools for changing the number of topics. Another
assumption we made was our choice of hyper-parameters used in training the model.
They were chosen to be in line with previous modeling work [Griffiths and Steyvers
2004]. However, even given these assumptions, our validation study strongly suggests
that the intuitions discovered by the model are shared by designers and non-designers
alike.

A key feature of our work is the development of an extensive database of magazine
colors spanning 14 years of publication. Because the present study is meant to be a
demonstration of the concept of color semantics, we evaluated all of the covers together,
not taking into account how designs may have changed over the years. There clearly
exist trends in design, and such trends might be interesting and important to study.
One might want to know, for instance, how the association between pink hues and terms
like “women” and “fashion” has developed over time, or one might want to know what
color–word associations exist in designs from the last year. Extensions to our present
work could tease out the formation and evolution of such trends. A potential approach
might be to use a predictive model that represents time, e.g., logistic regression, in
conjunction with LDA-dual.

Our validation study shows that users across different countries, genders, and age
groups largely agree with the colors and linguistic concept associations discovered by
our model. This is not to say that the results are completely general across all subsets
of the population; participants all read English, were mostly college educated, and had
access to the Internet. An important scientific extension would be to study color seman-
tics in different cultures (similar to how Reinecke and Gajos [2014] study aesthetics of
low level color features). Our methodology could easily be generalized to uncover how
different communities might agree or disagree on the meanings of colors. There is al-
ready extensive and comprehensive research on color naming across cultures [Kay et al.
2009], and we argue that investigating agreement on color semantics is a natural next
step. Interestingly, we were contacted by participants who had color vision deficiency
but still wished to perform the task. Although we did not include those participants
in this study, various color blind communities might have different conceptions of
color semantics, and there are clearly applications for design accessibility (e.g., Flatla
et al. [2013]).

Finally, we presented a number of applications for color semantics to illustrate how
it can enable more meaningful user interactions, and perhaps help non-designers gen-
erate more creative and appealing designs. We specifically demonstrated color palette
selection, design example recommendation, image retrieval, color region selection in
images, and pattern recoloring. We demonstrated an initial pass at instantiating these
applications, which we hope to develop and test in terms of user experience and perfor-
mance. Future work will hopefully incorporate these applications into current design
creation tools and extend this first step toward a broader goal of making design acces-
sible to the general public.

11https://github.com/ali-design/ColorSemantics.git.
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APPENDIX

Fig. 16. Topics versus titles. The proportion of each of the 12 color–word topics, k1 to k12 (see Figures 5
and 8) for each magazine title including all the issues in the dataset (see Table III) is illustrated. Note that
the colors here are just legends for the purpose of visualization, and are not related to the color–word topics.
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Table II. Magazine Titles’ Proportions in the Color-work Topics

Proportions (denoted by prop) of magazine titles in the color–word topics (k1, k2, . . . , k12). Only the top
10 titles in each color–word topic are shown.
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Table III. Summary of Our Magazine Covers Dataset

Fig. 17. Histogram of the number of collected magazine covers per year.
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Table IV. Handcrafted Stop Word List

Note that these words are inspected and excluded by manually visiting the first 30 words in the word topics
inferred by the model.

Fig. 18. Color–word topics inferred by the LDA-dual model. Illustration of the six color topics. Note that for
visualization, only the principal elements in the histograms are shown. Also note that the numerical weight
of each word topic is shown next to heading of each word topic histogram.
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Fig. 19. Relevance matrices R̂1 and R̂2 for Experiment I, for the first (left) and second (right) set of questions,
respectively, computed for: (a) females, (b) males, (c) non-U.S. participants, (d) U.S. participants, (e) non-
designers, and (f) designers.
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Fig. 20. Relevance matrices R̂1 and R̂2 for Experiment II, for the first (left) and second (right) set of
questions, respectively, computed for: (a) females, (b) males, (c) non-U.S. participants, (d) U.S. participants,
(e) non-designers, and (f) designers.
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Fig. 21. Comparison of diagonal elements of relevance matrices between demographic subsets. The first
row of plots is data from color palette to word clouds (Experiment I), and the second row is word cloud to
color palettes (Experiment II). Orange color indicates elements compared between diagonals of R̂1 matrices,
whereas blue color indicates R̂2 matrices. Each number refers to a color–word topic. Notice that the values
are quite close to the diagonal, indicating high similarity between the color palette–word cloud associations
between demographic groups. Over all comparisons in Experiment I (considering all data points in the first
row), the R2 of the identity line (y = x) is 0.89, and for Experiment II (all data points in second row) it
is 0.71. There is possibly one point, the blue “2” in the top left (male versus female), where males made
a slightly weaker association than women between the colors and words in topic k2. Given the relatively
small number of comparisons in this plot, however, this finding is unlikely to be statistically significant. The
overall variance in the second row is larger, due to the smaller amount of data collected in Experiment II.
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